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Abstract Within the fragment resolution of molecular systems the conceptual and
interpretative advantages of using the separate eigenvalue problems for the internal
and external part of the Hermitian matrix representing a physical quantity in quantum
mechanics are examined. By definition, these two parts accordingly combine only
the diagonal and off-diagonal subsystem-resolved blocks of matrix elements. These
two partial eigenvalue problems bring about the matrix internal or external decou-
plings, respectively, which have recently been used in several interpretations of the
molecular electronic structure. A character and structure of the external eigensolu-
tions is examined in some detail and their recent applications in the Charge Sensitivity
Analysis—to extract the most important electron-transfer effects between constituent
atoms of model chemisorption systems, and in the Molecular-Orbital theory—to pre-
cisely identify the inter-orbital flows of electrons, are summarized and commented
upon. The grouping relation, for combining the external/internal eigensolutions into
those for the whole matrix, is derived in the context of the complementary “rotations”
of the basis set vectors.
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1 Introduction

In what follows the symbol P denotes a square or rectangular matrix, P stands for a
row vector, and P represents a scalar quantity.

Consider the finite, N -dimensional matrix representation H = 〈χ |Ĥ|χ〉 of the
physical quantity H corresponding to the quantum-mechanical (Hermitian) operator
Ĥ, defined by the orthonormal basis vectors |χ〉 = {|1〉, . . . , |N 〉} in the molecular
Hilbert space. In several computational and/or interpretative applications of the quan-
tum theory one partitions this set into, two or several complementary subsets, say,
|χ〉 = |χ A,χ B〉 = {|χ X 〉}, of dimensions A and B, respectively, N = A + B. For
example, these subspaces may represent the atomic orbitals (AO) originating from
atoms X = (A, B) of a diatomic molecule M = A − B, or they constitute some arbi-
trary basis functions of the complementary fragments of a larger molecular system.
This division of the representation basis set uniquely identifies the associated blocks of
H = {HX,Y = 〈χ X |Ĥ|χY 〉}. Such a partition, be it in a different Configuration Inter-
action (CI) scenario, is also invoked in the context of Löwdin’s partitioning technique
[1] for solving the eigenvalue equation of the system Hamiltonian, originating from
the variation of the Rayleigh-Ritz functional for the expectation value of the system
energy expressed in terms of the CI coefficients, when the two subsets of electronic
configurations determine the complementary components of the system wave-func-
tion.

Another subject, in which one encounters such a partition, involves alternative
decoupling schemes of the atomically resolved hardness tensor [2,3] of an N -atomic
reactive system consisting of reactants A and B, η = {ηX,Y = {ηx,y, x ∈ X, y ∈
Y }}, (X,Y ) = A, B, used in a search for the most compact representation of the
Charge-Transfer (CT) phenomena in the externally open or closed molecular sys-
tems [2–6]. The diagonalization of η, determining its principal-axes representation,
amounts to the matrix total decoupling and leads to the independent (collective) chan-
nels for electron displacements called the Populational Normal Modes (PNM) [2–6].
The molecular fragment resolution naturally divides the atomic modes into groups cor-
responding to constituent atoms of each subsystem. Therefore, the molecular hardness
matrix can be partitioned into its internal (i) and external (e) parts, which respectively
combine the intra-fragment (diagonal) and inter-fragment (off-diagonal) blocks of the
hardness matrix elements between the system Atoms-in-Molecules (AIM):

η = ηi + ηe, ηi = {ηX,XδX,Y }, ηe = {ηX,Y (1 − δX,Y )}. (1)

The inter-fragment decoupled, internal part ηi of η can be viewed as representing
the “unperturbed” (zeroth-order) “promolecular” system M0 = (A|B), consisting of
the separate molecular fragments (subsets of bonded atoms), before formation of the
inter-fragment chemical bonds in M, ηi ≡ η0. It can be considered as the reference for
the displacement aspect of the hardness matrix of the “perturbed” molecular system:
η = ηi + ηe ≡ η0 +�η.

The so called Internal Normal Modes (INM) [2,3], the eigensolutions of ηi , then
constitute the decoupled channels for the charge redistribution in the separate frag-
ments of the promolecule. The Inter-Subsystem Modes (ISM), in the chemical reactivity
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applications [2,3] also called the Inter-Reactant Modes (IRM), represent the
eigensolutions of ηe. These externally decoupled channels have been found to generate
an attractive framework for the compact description of the charge flows accompanying
the formation of chemical bond(s) between A and B [2,3].

These two partial eigenvalue problems thus focus on the complementary aspects
of the charge displacement in a transition from the promolecule to molecule: the
internal (promolecular) modes characterize the independent channels of the charge
polarization inside each of the mutually uncoupled (separate, non-bonded) fragments
of the promolecule, while the external problem describes the CT-processes relative
to this initial reference state. In other words, the external (interaction) channels focus
solely on the inter-fragment bonding, i.e., the displacement aspect of the molecular
electronic structure, while the internal channels deal with the intra-fragment bonds,
already present in the promolecule, and as such they only characterize the initial-stage
of the bond-formation process.

One should also mention at this point the partial transformations giving rise to the
internal and external decouplings of the whole hardness tensor [2–5], rather than of
its internal and external parts, which together amount to its total decoupling:

C†ηC = c(diagonal) = {cXδX,Y }, C†C = I. (2)

Clearly, the internal decoupling transformation of η, which leads to the diagonalization
of only the intra-fragment blocks of η, must be identical with that diagonalizing ηi . By
definition, the external decoupling of the whole hardness tensor leads to the vanishing
off diagonal (coupling) blocks in the transformed tensor. However, since this require-
ment does not specify the transformation uniquely, the additional Maximum Overlap
Criterion (MOC) has been used to generate the localized externally decoupled modes
in this scheme [2,3].

Yet another example of the complementary internal/external perspectives on the
charge reorganization in molecules involves the recently proposed Natural Orbitals
for Chemical Valence (NOCV) [7,8], which have been successfully applied to interpret
the metal–ligand bonds of coordination chemistry. They represent the eigenfunctions

of the chemical-valence operator [9], V̂ = P̂ − P̂
0
, defined by the difference between

the molecular (P̂) and promolecular (P̂
0
) projections on the respective occupied orbi-

tals, with the occupied AO/MO of the separate fragments now determining the relevant
“promolecular” reference. These projection operators respectively identify the occu-
pied subspaces of the Molecular (Spin) Orbitals (MO) of the system as a whole, and of
the AO/MO of the separate fragments of the promolecule. Their AO-representations
in the LCAO MO theory thus define the associated Charge-and-Bond-Order (CBO)

matrices P = n〈χ |P̂|χ〉 and P0 = n〈χ |P̂0|χ〉, respectively, where n stands for the
overall number of electrons in the isoelectronic molecular and promolecular systems.
Hence the overall displacement of P due to formation of the inter-fragment bonds:
�P = P − P0 = n〈χ |V̂|χ〉. The subsets of basis functions originating from the
separate fragments A and B, |χ〉 = |χ A,χ B〉, then partition these matrices into the
corresponding subsystem-resolved blocks: P = {PX,Y },P0 = {PX,XδX,Y } ≡ Pi , and
�P = {�PX,Y } = {�PX,Y (1 − δX,Y ) = PX,Y (1 − δX,Y )} ≡ Pe.
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Therefore, the AO-representation of the chemical-valence operator is proportional
to the external part of the CBO matrix, so that its eigensolutions (NOCV) represent
the bond-order ISM. They have been shown to generate an attractive framework for
describing the inter-orbital flows of electrons, which accompany the formation of
chemical bonds between A and B, capable of the precise separation of the forward-
and back-donations in the coordination bonds [7,8].

It is the main purpose of the present paper to clarify the relations between solutions
of the alternative internal and external eigenvalue problems, which can be formulated
in the context of partitioning the representation basis set, and to elucidate their relative
merits in practical applications to interpreting the chemical bonds and related classical
issues in the theory of molecular electronic-structure and reactivity.

2 Eigenvalue problems

Consider the N -dimensional representation of the quantum-mechanical (Hermitian)
operator Ĥ attributed to the physical quantity H , H = 〈χ |Ĥ|χ〉 = {Hi, j = 〈i |Ĥ| j〉},
e.g., the Hamiltonian operator Ĥ(n) of an n-electron system corresponding to the
energy E . To simplify the following analysis we assume the ortho-normal metric of
the basis set |χ〉 = {|i〉}, 〈i | j〉 = δi, j , e.g., that characterizing the orthogonalized
AO, the MO configurations in the CI expansion of the system wave-function, or the
underlying atomic modes of the Charge Sensitivity Analysis (CSA) [2–6], in terms of
which various hardness decoupling schemes are formulated.

The overall diagonalization problem C†HC = E(diagonal) = {Eαδα,β},C†C = I,
where the columns of

C =
{

CT
α = 〈χ |α〉 =

[ 〈
χ A

∣∣α〉 = C A,T
α〈

χ B |α〉 = C B,T
α

]}
(3)

group the basis set projections for αth eigensolution corresponding to Eα , gives the
following eigenvalue equation for this specific solution, written in the block-matrix
form:

[
HA,A HA,B

HB,A HB,B

] [
C A,T
α

C B,T
α

]
= Eα

[
C A,T
α

C B,T
α

]
or

HA,AC A,T
α + HA,B C B,T

α =EαC A,T
α , HB,AC A,T

α + HB,B C B,T
α =EαC B,T

α . (4)

It forms the basis of the Löwdin partitioning technique [1]. More specifically, by using
one of these equations to express one component of the eigenvector in terms of the
other, e.g.,

C B,T
α = (EαIB − HB,B)−1HB,AC A,T

α , (5)

123



806 J Math Chem (2008) 44:802–815

and substituting the result into the other Eq. 4 then gives the effective eigenvalue
problem for the independent component:

[HA,A + HA,B(EαIB − HB,B)−1HB,A]C A,T
α = EαC A,T

α . (6)

This technique has been designed to determine the eigensolutions of Eq. 4 and as
such it is widely applied in contemporary quantum chemistry [10]. For the analytical
purposes, however, the reverse procedure can be also applied, e.g., of using the known
solutions of Eq. 4 to infer the properties of matrices [11].

This partitioning also provides a framework for discussing the solutions of the
partial internal and external eigenvalue problems in the subsystem resolution [2,3]:

O†Hi O = h = {hmδm,n} = {hXδX,Y }, Hi = {HX,XδX,Y },
O = {OXδX,Y }, OX =

{
O X,T

m =
〈
χ X |m

〉}
,O†O = I; (7)

U†HeU = ε = {εkδk,l}, He = {HX,Y (1 − δX,Y )}, U = {UT
k }, U†U = I. (8)

The former determines the decoupled eigensolutions of the two diagonal blocks of H,

HA,A O A,T
m = h A

m O A,T
m , HB,B O B,T

n = hB
n O B,T

n , (9)

while the solutions of the latter satisfy the coupled equations:

[
0A,A HA,B

HB,A 0B,B

][
U A,T

k

U B,T
k

]
= εk

[
U A,T

k

U B,T
k

]
or

HA,BU B,T
k = εkU A,T

k , HB,AU A,T
k = εkU B,T

k . (10)

A straightforward elimination of one component in the two preceding equations,

U A,T
k = ε−1

k HA,BU B,T
k , U B,T

k = ε−1
k HB,AU A,T

k , (11)

then gives the following effective external eigenvalue problems for each subsystem:

HA,BHB,AU A,T
k ≡ Fe f f

A U A,T
k = ε2

k U A,T
k ,

HB,AHA,BU B,T
k ≡ Fe f f

B U B,T
k = ε2

k U B,T
k . (12)

They determine the two components of kth eigenvector in

U =
{

UT
k = 〈χ |k〉 =

[ 〈
χ A

∣∣ k
〉 = U A,T

α〈
χ B

∣∣ k
〉 = U B,T

k

]}
, (13)

with the symmetrical effective external operators of molecular fragments defined by
the respective diagonal blocks of the squared external part of H, (He)2 : (Fe f f

X )T =
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Fe f f
X = (He)2X,X , X = A, B. Multiplying from the left Eq. 10 by HB,A and HB,A,

respectively, also gives

Fe f f
B U B,T

k = εkHB,AU A,T
k , Fe f f

A U A,T
k = εkHA,BU B,T

k , (14)

and hence the alternative expressions for one component in terms of the other:

U A,T
k = εk(F

e f f
A )−1HA,BU B,T

k , U B,T
k = εk(F

e f f
B )−1HB,AU A,T

k . (15)

It follows from Eq. 12 that the two subsystem components (U A
k ,U B

k ) of the exter-

nal mode Uk are the eigenvectors of the effective fragment-operators Fe f f
A (A × A)

and Fe f f
B (B × B), where for definiteness we assume A ≤ B, which exhibit the same

eigenvalue ε2
k . Together these operators define the block-diagonal (externally decou-

pled) effective operator for the system as a whole, Fe f f = {FX
ef f δX,Y } = (He)2, the

eigenvalue equation of which reads:

Fe f f UT
k = (He)2UT

k = ε2
k UT

k or U†(He)2U = ε2 = {ε2
kδk,l}. (16)

Therefore, the external modes U can be determined via the diagonalization of the
inter-subsystem decoupled operator (He)2, which amounts to the separate subsystem
diagonalization (eigenvalue) problems of Eq. 12. In the delocalized modes [2,3], for
which ε2

k > 0, the A eigenvectors {U A
k } of Fe f f

A will combine with their B conjugates

{U B
k } among the eigenvectors of Fe f f

B , which exhibit the same eigenvalue ε2
k , whereas

the remaining B − A ≥ 0 eigenvectors of Fe f f
B will combine with the zero component

in A, thus giving rise to the B-localized (l) channels U l = (0A
l ,U B

l ), which are inac-
tive in the displacement process behind the He = �H ≡ H − Hi displacement. It can
be verified using Eq. 8 that the eigenvalues of such localized external modes identi-
cally vanish: εl = U∗

l HeUT
l = 0. In the hardness-decoupling scenario of the reactive

system A–B [2,3] the B-localized solutions can only internally polarize B, playing no
part in the CT between the two reactants. Similarly, in the NOCV eigenvalue problem
[7,8] for�P such natural orbitals do not participate in the inter-fragment redistribution
of electrons, which accompanies the bond-formation process. This general structure
of U is summarized in Fig. 1.

The pairs of the mutually orthogonal, Fe-degenerate modes (Uk,U−k), k =
1, 2, . . . , A, for the complementary eigenvalues (εk > 0,−εk < 0) of He, respec-
tively,

HeUT
k = εkUT

k and HeUT−k = −εkUT−k ≡ ε−kUT−k, (17)

are represented by the symmetric (“bonding”) and anti-symmetric (“anti-bonding”)
combinations of the subsystem components U A

k and U B
k , which constitute the inde-

pendent, mutually orthogonal eigensolutions of Fe f f = (He)2 corresponding to the
same eigenvalue ε2

k :
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Fig. 1 The block structure of
the eigenvector matrix
U = 〈χ |ξ 〉 determining the
external modes
|ξ 〉 = |χ〉U = (| − k〉, |k〉, |l〉),
including the delocalized vectors
| − k〉 and |k〉, determined by the
complementary columns of
expansion coefficients
(UT−k ,UT

k ), k = 1, 2, . . . , A for
the negative and positive
eigenvalues, respectively, which
are active in the M0 → M
displacement, and the
B-localized vectors |l〉, which
remain inactive in this chemical
change

|−k 〉 | k 〉 | l 〉
                 A          2A  N = A + B

〈 c

c

A | T,A
k−U T,A

kU Ul
A = {0l

A,T}= 0 A,B−A 

〈 B | T,B
k−U T,B

kU Ul
B = {Ul

B,T} 

ε−k εk >0 εl = 0
M0→M Active M0→M Inactive 

<0

Uk = (U A
k ,U B

k ), U−k = (U A
k ,−U B

k ) ≡ (U A−k,U B−k). (18)

The (M0 → M)-active external modes (eigenvectors of He) exhibit intermediate
degrees of inter-fragment delocalization between the localized internal modes of both
fragments [eigenvectors of Hi (Eqs. 7 and 9)] and the delocalized molecular modes
[eigenvectors of H = Hi + He (Eq. 4)]. For example, the IRM in illustrative chemi-
sorption complexes have been found to be more localized, compared to PNM of the
whole reactive system [2,3]. Similarly, the NOCV exhibit a relative localized character
compared to less polarized canonical MO [7,8].

The interpretative advantage of the external modes of the Hermitian operators, how-
ever, lies in their applications to the interaction/coupling between a small subsystem
and its much larger molecular environment B, when B 	 A. Then, only a small number
of 2A external modes (see Fig. 1) is active in the promolecule→molecule transition,
with a large number of the remaining N −2A inactive (B-localized) modes describing
the response of the environment to this chemical displacement. Therefore, the external
eigenvectors give a much more compact description of this bond-formation process,
compared to the eigenvectors of the whole matrix.

3 Ensemble average quantities and their partitioning

As already argued above, the external modes represent eigensolutions of the displace-
ment operator He = �H = H −Hi (Eqs. 8 and 16), which describes a transition from
the promolecular collection of non-bonded molecular fragments of Hi to the molecu-
lar system of the mutually interacting (bonded, coupled) subsystems of H. Let us now
briefly examine the ensemble average value 〈H〉 = Tr(HD) of H in the statistical
mixture of states defined by the density operator expressed in terms of the eigenstates
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|γ 〉 = {|γ 〉} of another operator �̂, �̂|γ 〉 = �γ |γ 〉,

D̂ =
∑
γ

|γ 〉 pγ 〈γ | ≡ |γ 〉 pγ 〈γ | ,
∑
γ

pγ = 1,

pγ = 〈γ | D̂ |γ 〉 = {pγ δγ,µ} ≡ Dγ , D = 〈χ | D̂ |χ〉 . (19)

Here the diagonal matrix pγ groups the ensemble state-probabilities, which define
the |γ 〉-representation Dγ of the density operator itself, and matrix D stands for the
|χ〉-representation of D̂. Therefore, for |χ〉 = |γ 〉 this ensemble average gives rise to
the probability-weighted mean of the expectation values {Hγ = 〈γ |Ĥ|γ 〉} :

〈H〉 =
∑
γ

pγ Hγ . (20)

For example, in the LCAO MO theory |χ〉denotes the AO basis set and |γ 〉 stands for
the canonical MO, |γ 〉 = |ψ〉, eigenvectors of the effective (one-electron) Fock oper-
ator F̂ represented by the Fock matrix F = 〈χ |F̂|χ〉, F̂|ψγ 〉 = eγ |ψγ 〉, and the density
operator is represented by the density matrix D = 〈χ |D̂|χ〉 = 〈χ |ψ〉pψ 〈ψ |χ〉 = P/n,
where P denotes the CBO matrix. Hence the ensemble-average orbital energy reads:

〈e〉 = Tr(FD) = n−1Tr(FP) =
∑
γ

eγ pγ or 〈F〉 = Tr(FP) = n〈e〉,

pγ = nγ /n, (21)

where n = ∑
γ nγ is the overall number of electrons, nγ denotes the MO occupation

number, and pψ = {pγ δγ,µ}.
The difference between this average quantity 〈H〉 = Tr(HD) in M, and the cor-

responding reference value in M0, 〈H0〉 = Tr(HD0), characterized by the density
operator involving projections on the same states |γ 〉 with promolecular probabilities
pγ ,0 = {p0

γ δγ,µ},

D̂
0 =

∑
γ

|γ 〉 p0
γ 〈γ | ≡ |γ 〉 pγ ,0 〈γ | ,

∑
γ

p0
γ=1, pγ,0= 〈γ | D̂

0 |γ 〉 = {p0
γ δγ,µ},

D0 = 〈χ | D̂
0 |χ〉 , (22)

then reads:

�〈H〉 = 〈H〉 − 〈H0〉 = Tr(H�D), �D = D − D0. (23)

For example, in the illustrative case of the LCAO MO theory, when the den-

sity operator is represented by the promolecular density matrix D0 = 〈χ |D̂0|χ〉 =
〈χ |ψ〉pψ,0〈ψ |χ〉 ≡ P0/n, the average orbital energy in such a promolecular ensemble
reads:

123



810 J Math Chem (2008) 44:802–815

〈e0〉 = Tr(FD0) = n−1Tr(FP0) =
∑
γ

eγ p0
γ or 〈F0〉 = Tr(FP0),

p0
γ = n0

γ /n, (24)

where n0
γ is the MO occupation number in the promolecule. The molecular displace-

ment in this average orbital energy, relative to such a reference state gives:

�〈e〉 = 〈e〉 − 〈e0〉 = Tr(F�D) = n−1Tr(F�P)

=
∑
γ

eγ�p0
γ , �pγ = pγ − p0

γ , or

�〈F〉 = 〈F〉 − 〈F0〉 = Tr(F�P). (25)

When the many-electron states are mixed in the density operators of Eqs. 19 and 22,
e.g., the electron configurations of the CI theory, the ensemble-average many-electron
quantities are determined. For example, as we have already indicated in Eqs. 21,24
and 25, by multiplying the average one-electron quantities 〈e〉, 〈e0〉 and 〈�e〉 by the
number of electrons n one determines the corresponding averages of the corresponding
total orbital energies 〈F〉, 〈F0〉 and 〈�F〉 of the whole many-electron system.

It should be stressed at this point, that the promolecular ensemble defined by the
density operator of Eq. 22 assumes the mixture of the same states as those used in the
molecular ensemble, e.g., the canonical MO’s in the LCAO MO theory. Alternatively,
the promolecular canonical MO, |γ 0〉 = |ψ0〉, different from their molecular counter-
parts |ψ〉 and exhibiting different occupations, can be used to define the promolecular

ensemble of M̃
0 = (A0|B0) :

ˆ̃D0 =
∑
γ

∣∣∣γ 0
〉
λ0
γ

〈
γ 0

∣∣∣ ≡
∣∣∣γ 0

〉
λγ ,0

〈
γ 0

∣∣∣ , ∑
γ

λ0
γ = 1,

λγ ,0 =
〈
γ 0

∣∣∣ ˆ̃D0
∣∣∣γ 0

〉
= {λ0

γ δγ,µ}, D̃0 = 〈χ | ˆ̃D0 |χ〉 . (26)

It should be also observed that in the LCAO MO theory the corresponding CBO
matrix will not be diagonal in the molecular MO representation:

D̃0,ψ = 〈ψ | ˆ̃D0 |ψ〉 = 〈ψ | ψ0
〉
λψ,0

〈
ψ0 |ψ〉 ≡ P̃0,ψ/n


= D̃0,ψ0 ≡
〈
ψ0

∣∣∣ ψ0
〉
λψ,0

〈
ψ0

∣∣∣ψ0
〉
= P̃0,ψ0

/n = {λ0
γ δγ,µ}. (27)

The corresponding displacement in the average orbital energy for this definition of
the promolecule then reads:

�̃ 〈F〉 = 〈F〉 −
〈
F̃0

〉
= n−1Tr(FP − F0P̃0) ≈ n−1Tr(F�P), (28)
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where the promolecular Fock operator matrix F0 = 〈χ |F̂0|χ〉, with F̂
0|ψ0

γ 〉 = e0
γ |ψ0

γ 〉.
The two reference states M0 = (A|B) and M̃

0 = (A0|B0) differ by the intra-frag-

ment molecular promotion, already present in M0 and missing in M̃
0
, where each

fragment is in its separate ground-state configuration. However, since F ∼= F0 and

〈χ | ˆ̃D0|χ〉 = n−1P̃0 = {n−1P̃0;X,XδX,Y = n−1P̃0,i ∼= n−1Pi one arrives at the
approximate equality of Eq. 28, in which �P = Pe = P − Pi .

The eigenvalue problem of �P = Pe ≡ n〈χ |V̂|χ〉

u†�Pu = ν = {vkδk,l}, �P = Pe = {PX,Y (1 − δX,Y )}, u†u = I, (29)

which defines the NOCV [7,8], has been shown to determine only a small subset of
pairs of complementary (CT-active) external channels ϕ = χu, which correspond to
the non-vanishing eigenvalues, vk > 0,

V̂ϕ−k = −vkϕ−k and V̂ϕk = vkϕk . (30)

They have been shown to provide a conceptually attractive framework for a precise
division [7,8]

�ρ(r) = Tr[ρ(r)�P] = 
kvk[ϕ2
k (r)− ϕ2−k(r)] = 
k�ρk(r), (31)

of the density-difference function, between molecular and promolecular electron den-
sities,

�ρ(r) = ρ(r)− ρ0(r), (32)

in terms of the inter-orbital flows {�ρk(r)}, from the “anti-bonding” {ϕ−k} into the
“bonding” {ϕk} CT-active NOCV. In Eq. 31 the matrix ρ(r) = 〈χ |ρ̂(r)|χ〉 represents
the quantum mechanical operator ρ̂(r) = ∑n

i=1 δ(r i − r) for the system electron
density, ρ(r) = 〈�|ρ̂(r)|�〉, where � denotes the system wave-function.

Finally, by integrating Eq. 31 over the whole space of electron positions gives the
closure relation expressed in terms of the ϕ−k → ϕk electron flows vk of the comple-
mentary pairs of the CT-active NOCV:

0 = 
k ∫�ρk(r)d r = 
kvk . (33)

It also follows from Eq. 25 that NOCV provide a natural framework for the division
of the average value of the system total orbital energy, which can be expressed in terms
of the ϕ-representation matrices �Pϕ = ν and Fϕ = u†Fu :

�〈F〉 = Tr(F�P) = Tr(Fϕν) = 
kvk[〈ϕk | F̂ |ϕk〉 − 〈ϕ−k | F̂ |ϕ−k〉]
≡ 
kvk(ek − e−k) ≡ 
k�〈F〉k . (34)
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It is expressed in terms of the NOCV contributions {�〈F〉k}, each given by the prod-
uct of the corresponding displacement in the orbital energy, �ek = ek − e−k , and the
associated flow of vk electrons marking the ϕ−k → ϕk CT.

This one-electron (orbital) development can be straightforwardly generalized to
cover the many-electron density operators defining the mixture of the n-electron wave-
functions� = {�r }, |γ 〉 = |�〉, expanded in terms of the given basis set of n-electron
functions � = {�s}, |χ〉 = |�〉, e.g., the electron configurations in the CI theory.
A given division of the basis set into configuration subsets X=(A, B),�={�A,�B},
then determines the associated block structure of the CI-Hamiltionian Ĥ(n),H =
〈�|Ĥ|�〉 and of the density operator D = 〈�|D̂|�〉 = Di + De. Again, the exter-
nal, displacement part De = �D = {DX,Y (1 − δX,Y )} ≡ 〈�|�D̂|�〉 represents the
shift in the density matrix relative to the “promolecular” reference of the uncoupled
subsets of configurations, defined by the block-diagonal internal part of the density
operator Di = {DX,XδX,Y } ≡ 〈�|D̂0|�〉. Here, the internal density operator D̂0 = D̂i

is implicitly defined by the internal eigenvalue problem of Di ,

Q†Di Q = q = {quδu,w} = {qXδX,Y }, Q = {QXδX,Y }, Q†Q = I, (35)

which generates the internal modes of the promolecular density matrix 
 = �Q =
{
A = �AQA,
B = �BQB},

D̂
0 =

∣∣∣�A
〉

qA
〈
�A

∣∣∣ +
∣∣∣�B

〉
qB

〈
�B

∣∣∣ . (36)

The related external eigenvalue problem of De,

T†�DT = d = {dsδs,t }, T†T = I, (37)

now provides the convenient framework of the n-electron external eigenfunctions,
� = �T, for partitioning the average (inter-subset) interaction energy:

�〈E〉 = Tr(H�D) = 
sds[〈�s | Ĥ |�s〉 − 〈�−s | Ĥ |�−s〉]
≡ 
sds(Es − E−s) ≡ 
s�〈E〉s . (38)

This division again involves the shifts in the expectation values of the energy for the
complementary CT-active eigenfunctions of the displacement operator �D̂ = D̂

e =
D̂ − D̂

0
, for the non-vanishing eigenvalues ds > 0,

�D̂�−s = −ds�−s and �D̂�s = ds�s . (39)

4 Complementary decoupling schemes of molecular hardness tensor

Yet another issue in CSA, which deals with the internal and external decoupling of
the symmetric hardness tensor η = ηi + ηe or its internal (ηi ) or external (ηe) con-
tributions, involves the complementary partial transformations of the representation
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basis vectors [2,3], the product of which brings about the complete diagonalization
(decoupling) of the whole hardness matrix (Eq. 2). For example, the initial (internal)
decoupling transformation R = {RXδX,Y } of ηi (Eq. 7),

R†ηi R = a(diagonal), R†R = I, (40)

defines the associated complementary “rotation” CR, such that RCR = C : CR =
R†C. Similarly, the initial external transformation W, which decouples ηe (Eq. 8),

W†ηeW = b(diagonal), W†W = I, (41)

generates the complementary transformation CW in C = UCW : CW = W†C. All
these unitary matrices represent the associated “rotations” of the underlying (atomic)
basis set vectors [2–5], giving rise to the collective (delocalized) charge displacement
modes of molecular fragments X = (A, B) or AIM in the whole molecular system M.

The initial internal decoupling R brings about the diagonalization of only the intra-
fragment blocks of η. This transformation generates the non-diagonal intermediate
hardness tensor:

ηint = R†ηR = R†(ηi + ηe)R = a + R†ηeR, (42)

the eigenvalue problem of which defines the complementary rotation CR (see Eq. 2):

C†
Rηint CR = C†

RaCR + C†ηeC = C†ηC = c(diagonal) ≡ {cXδX,Y }. (43)

In the same way the initial external decoupling transformation W generates the asso-
ciated intermediate hardness tensor

ηext = W†ηW = W†(ηi + ηe)W = W†ηi W + b, (44)

the eigenvalue problem of which determines its complementary rotation CW :

C†
Wηext CW = C†

WbCW + C†ηi C = C†ηC = c. (45)

Futhermore, expressing the overall eigenvalue problem of Eq. 2 in terms of these partial
internal and external decoupling transformations and their respective complementary
rotations gives:

C†ηC = C†(ηi + ηe)C = C†
R(R

†ηi R)CR + C†
W(W

†ηeW)CW

= C†
RaCR + C†

WbCW = c. (46)

This equation, which also follows from adding Eqs. 43 and 45, partitions the overall
diagonalization of the hardness matrix into contributions involving the complementary
rotations of the tensor internal and external eigenvalues a and b: the former are trans-
formed using the external complement CR of the primary internal decoupling trans-
formation, while the latter require the internal complement CW of the primary external
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transformation. This grouping relation, for combining the results of the external and
internal eigenvalue problems into eigensolutions of the whole matrix, complements
Eq. 6 of Löwdin’s partitioning technique.

We finally observe, that the external decoupling can be also formulated with refer-
ence to the total hardness tensor [2,3], by requiring the vanishing off-diagonal coupling
blocks in the transformed hardness matrix. This requirement does not specify the trans-
formation uniquely, so that additional maximum overlap criterion has been used to
specify such a scheme uniquely. Another example of such a transformation is provided
by the product transformation Ũ = CR [3], which “removes” the off-diagonal charge
couplings in the resulting hardness tensor:

R†(C†ηC)R = R†cR = {RX†cX RXδX,Y }. (47)

5 Conclusion

As we have already remarked in Sect. 3, within the standard SCF LCAO MO theory
the non-diagonal Fock and density matrices of the AO representation, F and D, respec-
tively, become diagonal in the canonical MO representation, Fψ = {eγ δγ,µ} = eψ

and Dψ = {pψγ δγ,µ} = pψ , so that the underlying operators F̂ = |ψ〉eψ 〈ψ | and
D̂ = |ψ〉pψ 〈ψ | commute: [F̂, D̂] = 0. Indeed, by construction the canonical MO
constitute the simultaneous eigenvectors of both these operators. Partitioning next the
two matrices F and D into their internal and external parts corresponding to a given
division of the AO basis set χ = {χ X }, X = A, B,

F = Fi + Fe = F0 +�F and D = Di + De = D0 +�D, (48)

then gives rise to the associated sets of the internal and external eigenvalue problems
for the corresponding components of the Fock and density operators, respectively:

o†Fi o = d = {dmδm,n} ≡ Fi,ξ and o†Di o = pξ = {pξmδm,n} ≡ Di,ξ ,

ξ={ξm}=χo, 
m pξm=1, o†o=I,
(49)

u†Feu = g = {gkδk,l} ≡ Fe,ϕ and u†Deu = pϕ = {pϕk δk,l} ≡ De,ϕ,

ϕ={ϕk}=χu, 
k pϕk =1, u†u=I.
(50)

Again, these simultaneous eigenvalue problems of the underlying pairs of operators,

{F̂i = |ξ〉 d 〈ξ | , D̂
i = |ξ〉 pξ 〈ξ |} and {F̂e = |ϕ〉 g 〈ϕ| , D̂

e = |ϕ〉 pϕ 〈ϕ|}, (51)

respectively, imply that these operators commute, [F̂i
, D̂

i ] = [F̂e
, D̂

e] = 0, thus hav-
ing in each pair a common set of eigenvectors.
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Hence, taking into account that Tr(FD) = Tr(Fi Di + FeDe), though FD 
= Fi Di +
FeDe, and the invariance of the trace with respect to similarity transformations of oper-
ators, one obtains the following alternative expression for the average orbital energy
of Eq. 21:

〈e〉 = Tr(FD) =
∑
γ

eγ pγ

= Tr(Fi Di + FeDe) = Tr(Fi,ξDi,ξ + Fe,ϕDe,ϕ)

=
∑

m

dm pξm +
∑

k

gk pϕk ≡ 〈di 〉 + 〈ge〉. (52)

This combination formula for the average orbital energy, the mean value of the eigen-
values of the Fock matrix, thus indicates that this quantity can be alternatively gener-
ated by the sum of the mean values 〈di 〉 and 〈ge〉 of the corresponding eigenvalues of
the internal and external operators, respectively, calculated for the density operators
defined by the relevant eigensolutions of these partial problems.
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